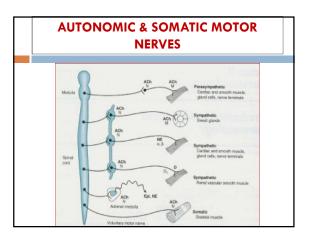
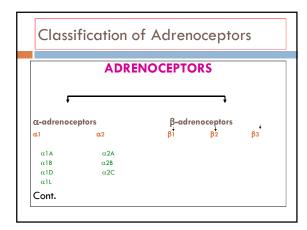
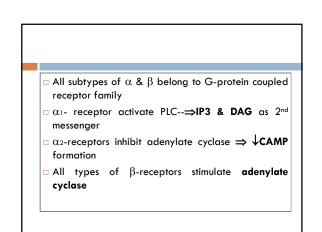
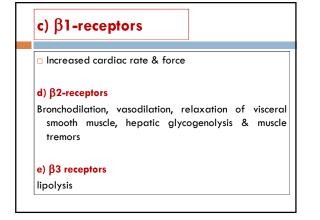

ADRENERGIC NEUROTRANSMISSION

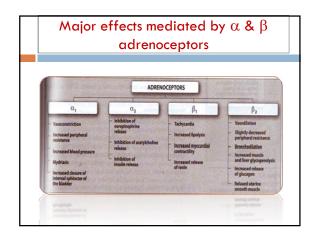

Dr. Arunlal V. B. Professor, DAMCOP

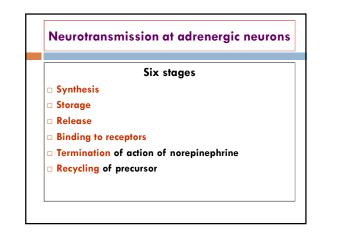

Aedicinal Chemistry

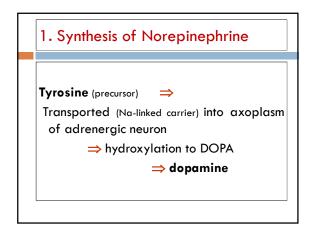

Anatomy of Sympathetic (thoracolumber) Nervous System

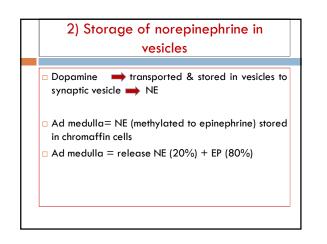
- Nerves arise from spinal cord
- Pre-ganglionic nerve fibers arise from thoracolumber region of sp.cord (T₁-L₂, containing cell bodies) => terminate in sym. ganglia near spinal column (either sides)
- Post-ganglionic fibers arise form ganglia & reach to organs

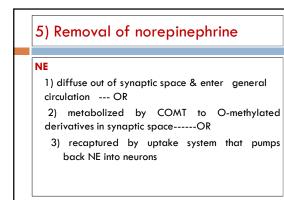

Effects of Adrenoceptors

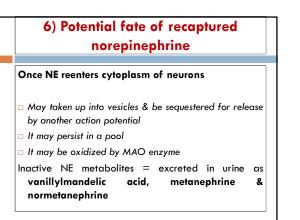

a) al-receptor activation

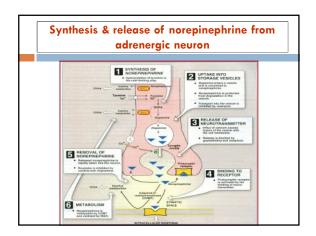

Vasoconstriction, relaxation of GI smooth muscle, salivary secretion stimulation & hepatic glycogenolysis

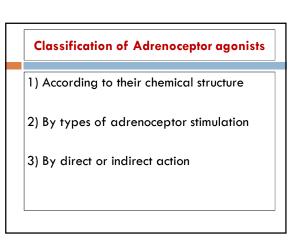

b) α 2-receptors activation

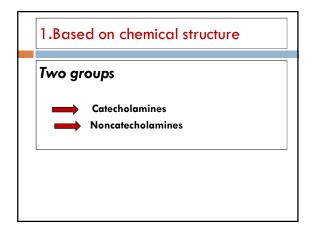

Inhibition of transmitter release (including NA & ACh release for autonomic nerves), platelet aggregation, contraction of vascular smooth muscle, inhibition of insulin release

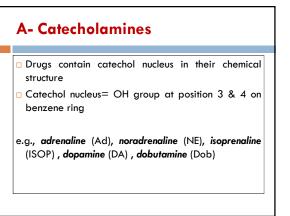



3) Release of Noradrnaline


Arrival of action potential at nerve junction ⇒ triggers opening of Ca²⁺ channels ⇒ passage of Ca²⁺ from extracellular fluid to cytoplasm of neurons ⇒ fusion of vesicles with cell memb. ⇒ rupture of vesicles ⇒ release of NE


4) Binding to α receptors


- \square NE \Rightarrow release from synaptic vesicles
- Diffuse across synaptic space
- Binds to either post synaptic receptors on effector organ or to presynaptic receptors on nerve ending



Properties of Catecholamines

1. High potency

Highest potency in activating $\alpha \ or \ \beta$ receptors

2. Rapid inactivation

- These catecholamines metabolized by COMT (postsynaptically) + MAO (intraneuronally)
- Also metabolized in liver, gut wall by MAO+COMT

 Given parenterally ; ineffective when given orally Cont.

3. Poor penetration into CNS

Catecholamines are polar = not readily penetrate into CNS

 Most have clinical effects attributable to CNS effects= anxiety, tremor & headache

B) Noncatecholamines

 Sympathomimetics do not contain catechol nucleus in their chemical structure

e.g., amphetamine, ephedrine, phenylepohrine (Phe), methoxamine, salbutamol (Salb), terbutaline, fenoterol

- Poor substrates for MAO
- Prolonged duration of action
- $m \star \uparrow$ Lipid solubility permits greater access to CNS

c) Mainly Beta agonists

i) Mainly β1 & β2 agonists

e.g., ISOP

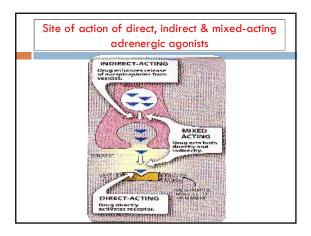
- ii) Mainly β1 agonists
- e.g., Dob, prenalterol
- iii) Mainly β2 agonists
 e.g., Salb, terbutaline, ritoderine, fenoterol
- iv) Dopamine agonists
- e.g., DA, bromocriptine, fenoldopam, ibopamine

3. Based on mechanism of action of adrenergic agonists

A. Direct acting agonists

Act directly on α or β receptors producing effects similar to those that occur following stimulation of sympathetic nerves

e.g., Ad, NE, ISOP, Phe, Salb


B. Indirect acting agonists

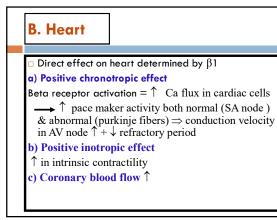
- Agents act indirectly
- Their actions dependent on release of endogenous catecholamine
- They have either of **two d/f mechanisms**: a) displacement of stored catecholamines from adrenergic nerve ending
- e.g. amphetamine & tyramine
- Cont.

b) Inhibition of reuptake of catecholamines already released

e.g., cocaine, & tricyclic antidepressants

C. Mixed action agonists They have capacity to stimulate adrenoceptors directly + release NE from adrenergic neurons e.g., Ephedrine & pseudoephedrine

Organ system effects of Sympathomimetic drugs

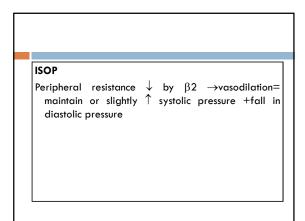

Cardiovascular system

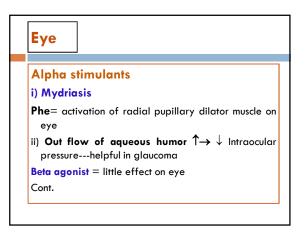
A. Blood vessels

- Peripheral vascular resistance & venous capacitance is controlled by catecholamines
- Alpha receptors 1 arterial resistance
- $\hfill \hfill \beta 2$ receptors promote sm muscle relaxation
- $\hfill\square$ Skin + splanchnic vessels= predominantly α receptors & constrict by Ad & NE
- Cont.

\square Blood vessels of skeletal muscle may constrict or dilate depend on whether α or β receptors are activated

- Overall effects of sympathomimetics on blood vessels depends on activities of that drug at α or β receptors
- D1 receptors promote vasodilation of renal, splanchnic, coronary, cerebral & other resistance vessels




C. Blood Pressure

Sympathomimetics = heart + PVR + venous return

Phe (a agonist) = \uparrow peripheral arterial resistance + \downarrow venous capacitance \Leftrightarrow rise in BP \rightarrow baroreceptor vagal tone $\uparrow \rightarrow$ slow HR

β-adrenoceptor agonist = stimulation of β-receptors in heart ↑ CO Cont.

Beta antgonists

 \square Production of aqueous humor \downarrow

Adrenergic drugs directly protect neuronal cells in the retina

Respiratory tract

- Activation of β2 receptors of bronchial sm muscles= bronchodilation
- Blood vessels of upper respiratory tract mucosa contain α receptors= decongestant action of adrenergic stimulant – clinically useful

Gastrointestinal tract

β-receptors

 Relaxation (via hyperpolarization) & d/c spike activity in sm muscles

a-selective agonists

 D/c muscle activity indirectly by presynaptically reducing the release of Ach & possibly other stimulants within ENS

$\alpha 2$ receptors

D/c salt & water flux into lumen of intestine

Genitourinary tract

- \Box Human uterus = α & β 2 receptors
- Bladder base, urethral sphincter & prostate contain α-receptors ----Mediate contraction ----promote urinary continence
- \square Bladder wall has $\beta 2$ ---mediate relaxation
- Ejaculation depends on normal α-receptors activation in ductus deferens, seminal vesicles & prostate

Exocrine glands

- Adrenoceptors present on salivary glands regulate secretion of amylase & water
- Clonidine = dry mouth symptom
- Adrenergic stimulants- --↑ sweat production (apocrine sweat glands on palms of hands) during stress

Metabolic Effects

- Activation of β 3 of fat cells== \uparrow lipolysis with enhanced release of free FA & glycerol
- \square a.2 receptors of lipocytes— inhibit lipolysis by \downarrow intracellular cAMP
- Sympathomimetic ↑ glycogenolysis in liver (by β receptors)--- ↑ glucose release into circulation
 Cont.

□ ↑ of catecholamine = metabolic acidosis □ β-receptor ⇔ ↑ insulin release □ $\alpha 2 ⇔ ↓$ insulin release

Effects on Endocrine functions & Leukocytosis

- receptors □ Renin stimulated by β1 & inhibited by α2 receptors (β-receptor antagonist ↓ plasma renin & BP in HTN
- by this mechanism)

 Adrenoceptors also modulate secretion of PTH, calcitonin, thyroxin & gastrin
- At high conc. Ad cause leukocytosis

Effect on CNS

- Action of sympathomimetics on CNS vary dramatically depending on ability to cross BBB
- Catecholamines ---CNS effects at high doses (nervousness, tachycardia, tremor)
- Noncatecholamines with indirect actions (amphetamine) → mild alerting with improved attention to boring tasks, elevation of mood, insomnia, euphoria, anorexia, fully blown psychotic behavior

Specific sympathomimetic drugs

Catecholamaines

1) Epinephrine (adrenaline)

- Powerful vasoconstrictor & cardiac stimulant
- It has +ve inotropic & chronotropic actions on heart
- Vasoconstriction due to effect on α receptors
- □ Also activates β2 receptors in some vessels (sk muscle) –dilation---total Peripheral resistance↓= ↓BP---increased blood flow in sk muscle during exercise

2) Norepinephrine (noradrenaline)

NE & Ad have similar effects on β1 receptors in heart & similar potency at α receptors

■ NE have little effect on β2 receptors -- ↑peripheral resistance-+ ↑ sys & diastolic BP

Isoproterenol

 \Box Very potent β -receptor agonist

- \square Little effect on α receptors
- $\hfill +ve$ chronotropic & inotropic actions (b/c of β -receptor activation)
- □ ISOP is potent vasodilator
- Marked ↑ in CO associated with fall in diastolic & MAP & lesser d/c or slight ↑ in systolic pressure

Dopamine

- Activates D1 receptors = vasodilation (several vascular beds including renal)
- Activation of presynaptic D2 receptors=suppress NE release
- Dopamine = activates $\beta 1$ receptors on heart
- \square Low dose of DA \downarrow peripheral resistance
- High doses DA activates vascular α receptors = vasoconstriction (including renal)

Dopamine agonists

Dopamine agonists with central actions important for treatment of Parkinson's disease & prolactinemia

Dobutamine

 \square Relatively $\beta 1$ selective synthetic catecholamine

Fenoldopam

- D1 receptor agonist
- Selectively leads to peripheral vasodilation in some vascular beds
- Intravenous treatment of severe hypertension

Other Sympathomimetics

Phenylephrine

- > Pure α-agonist
- > Acts directly on receptors
- > It is not catechol derivative so not inactivated by COMT
- > Much longer duration of action than catecholamine
- > Effective mydriatic & decongestant
- > Used to raise BP

Methoxamine

- Acts pharmacologically like Phe, acting directly on $\alpha 1$ receptors
- prolonged Cause ΒP in due to vasoconstriction
- Vagaly mediated bradycardia

Midodrine Prodrug, enzymatically hydrolyzed desglymidodrine (α_1 receptor selective agonist)

Used for treatment of postural hypotension, typically due to impaired ANS function

to

Ephedrine

- Non catechol phenylisopropylamines
- Occurs in various plants
- High bioavailbility
- Long duration of action (hours)
- □ Its excretion can be accelerated by acidification
- Mild stimulant, gain access to CNS
- Pseudoephdrine---component of many decongestant mixture

Xylometazoline & oxymetazoline

- \square Direct acting α agonist
- Used as topical decongestant (promote constriction of nasal mucosa)
- Cause hypotension at high doses b/c of central clonidine like effects
- Oxymetazoline has significant affinity for α-2A receptors

Amphetamine

- Phenylisopropylamine
- Important b/c of its use & misuse as a CNS stimulant
- Readily enter into CNS
- Marked stimulant effect on mood & alertness
- Depressant effect on appetite
- Peripheral actins mediated through release of catecholamines

Methamphetamine (N-methylamphetamine)

Very similar to amphetamine

Phenmtrazine

- Variant of phenylisopropylamine with ampetamine like effects
- Promoted as an anorexiant
- Popular drug of abuse

Receptor-selective Sympathomimetic Drugs Alpha2-selective agonists D/c BP through action in CNS Direct application to blood vessels cause vasoconstriction e.g., clonidine, methyldopa, guanfacine, guanabenz All are useful for treatment of HTN